10 research outputs found

    High intensity study of THz detectors based on field effect transistors

    Full text link
    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm^2 was studied for Si metal-oxide-semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation power up to kW/cm^2 range. The saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm^2. The observed signal saturation is explained by drain photocurrent saturation similar to saturation in direct currents output characteristics. The theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitatively experimental data both in linear and nonlinear (saturation) range. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orderd of magnitudes of power densities (from 0.5 mW/cm^2 to 5 kW/cm^2)

    Analysis of sodium copper chlorophyllin and sodium magnesium chlorophyllin by time-domain THz spectroscopy

    Get PDF
    The terahertz absorption spectra of sodium magnesium chlorophyllin (Chl-Mg-Na) and sodium copper chlorophyllin (Cu-Chl), two major members of the chlorophyll derivative family, have been measured in the range 0.2-2.5 THz, at room temperature. The capability of terahertz spectroscopy for quantitative characterization of Chl-Mg-Na intermolecular vibrations was investigated and the sensitivity of transitions with degree of hydration by changes in the molecular environment was examined. For the Cu-Chl derivative, a broad feature was observed around 1.8 THz which currently hinders clear Cu-Chl identification and quantification

    Investigating the low-frequency vibrations of chlorophyll derivatives using terahertz spectroscopy

    Get PDF
    The terahertz absorption spectra of sodium magnesium chlorophyllin (Chl-Mg-Na) and sodium copper chlorophyllin (Cu-Chl), two major members of the chlorophyll derivative family, have been measured in the range 0.2-3.0 THz (6.6-100 cm-1), at room temperature. Additionally, surface-enhanced Raman scattering spectroscopy was used to supplement data in the higher frequency range. The capability of terahertz spectroscopy for quantitative characterization of Chl-Mg-Na intermolecular vibrations was investigated and the sensitivity of the 1.82-THz feature with degree of hydration by changes in the molecular environment was examined. For Cu-Chl derivative, a broad feature was observed around 1.8 THz which currently hinders clear Cu-Chl identification and quantification

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape

    Temperature-dependent low-frequency vibrational spectra of sodium magnesium chlorophyllin

    Get PDF
    Terahertz time-domain spectroscopy has been used to investigate the vibrational spectra of polycrystalline sodium magnesium chlorophyllin - one of the natural derivatives of chlorophyll - over the temperature range 88 K–298 K. A number of well-resolved absorption peaks were observed in the frequency range 0.2–2.5 THz, which are interpreted as originating from mixed character of intramolecular and intermolecular vibration modes. As the temperature is increased, the observed absorption features resolve into broader peaks. The peak centered at 1.83 THz shifts towards higher frequencies, indicating that for this feature, significant intermolecular anharmonicity exist

    InP double heterojunction bipolar transistors for terahertz computed tomography

    No full text
    We present experimental studies of terahertz radiation detection by InP double heterojunction based transistors. We analyze the relation between their static characteristics and the experimentally determined voltage and current responsivities, showing importance of internal device parasitic capacitances and the external circuit loading effects. Finally, we demonstrate the use of these transistors for terahertz radiation computed tomography leading to 3D visualization of concealed objects. Our results pave the way towards wide use of heterojunction based transistors for terahertz imaging

    Terahertz vibrational modes of sodium magnesium chlorophyllin and chlorophyll in plant leaves

    No full text
    The low-frequency (terahertz) vibrational spectroscopy has been investigated experimentally for two chlorophyll species, Chl- and one of its magnesium derivatives (Chl-Mg-Na). The combination of terahertz time-domain spectroscopy and Fourier transform infrared spectroscopy has enabled a broad frequency range to be covered (0.2 to 18 THz). For Chl-Mg-Na, the terahertz spectra show clear and well-marked features at 1.44, 1.64, and 1.83 THz dominated by intermolecular interactions. The frequency dependent refractive index and absorption coefficient of Chl-Mg-Na were both determined using the Fit@TDS software. Below 1.0 THz, a refractive index of 2.09 was measured. In order to acquire further understanding of the observed vibrational modes, a detailed study of the temperature dependence of the line positions of the lowest modes in Chl-Mg-Na was performed. As the temperature was increased from 88 K to 298 K, the feature at 1.83 THz experienced a notable red shift of frequency and line shape broadening, whereas the feature at 1.44 THz showed little change. These results suggest that the 1.83 THz feature is dominated by intermolecular motions occurring over the crystalline unit cell of the Chl-Mg-Na molecular crystal. Finally, terahertz time-domain spectroscopy was used to acquire the spectra of an ornamental plant bearing yellow-green variegated leaves (ivy, Aureomarginata variety), the yellow sectors having lower chlorophyll content compared to the green sectors. In dehydrated green tissue, the chlorophyll molecules showed well-marked intermolecular vibrational modes at 1.86 THz, indicating that chlorophyll molecules are prone to packing with an ordered molecular arrangement. These results demonstrate the potential application of THz spectroscopy in the field of agronomy

    Detection of high intensity THz radiation by field effect transistors

    No full text
    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm2 was studied InGaAs high electron mobility transistors. The observed signal saturation behavior is explained by analogy with current saturation in standard direct currents output characteristics. The theoretical model of terahertz field effect transistor photoresponse was developed shows a good description match with experimental data. Our experimental results show that dynamic range of field effect transistors based terahertz detectors is very high and can extend from mW/cm2 up to kW/cm2
    corecore